

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 1 از 22

طرح نگهداشت و افزایش تولید 27 مخزن

FLARE RADIATION & DISPERSION STUDY REPORT

نگهداشت و افزایش تولید میدان نفتی بینک

Rev.	Date	Purpose of Issue/Status	Prepared by:	Checked by:	Approved by:	CLIENT Approval
D00	JAN. 2022	IFC	M.Aryafar	M.Fakharian	M.Mehrshad	
D01	JUN. 2022	IFA	M.Aryafar	M.Fakharian	M.Mehrshad	
D02	OCT. 2022	IFA	M.Aryafar	M.Fakharian	M.Mehrshad	
D02	DEC. 2022	IFA	M.Aryafar	M.Fakharian	M.Mehrshad	

Class:2 CLIENT Doc. Number: 'F0Z-708816

Status:

IDC: Inter-Discipline Check
IFC: Issued For Comment
IFA: Issued For Approval
AFD: Approved For Design
AFC: Approved For Construction
AFP: Approved For Purchase
AFQ: Approved For Quotation
IFI: Issued For Information
AB-R: As-Built for CLIENT Review
AB-A: As-Built —Approved

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 2 از 22

REVISION RECORD SHEET

PAGE	D00	D01	D02	D03	D04
1	Х	X	X	X	
2	X	Х	X	X	
3	X				
4 5	X				
6	X X X	Х	Х	Х	
7	X	X	X X	X	
8 9	X X X	Χ	X X X X	X X X X	
9	X	V	X	X	
10	Y	X	<u>^</u>	Y	
11 12	X	X	X	X	
13	X	X	X	X	
14	X	Χ	Χ	X	
15	X				
16	X				
17	Y	Х	X		
18 19	X X X	Х	X		
20	X	Χ	X		
21	X X X X	X			
22 23	X		X		
23	X				
24 25	Α				
25 26					
27					
28					
29					
30					
31					
32 33					
34					
35					
36					
37	1				
38	+			-	
39 40					
41					
42					
43					
44					
45	1			-	
46 47				<u> </u>	
48					
49					
50	ļ			ļ	
51				-	
52 53	1			1	
53 54				<u> </u>	
55					
56					
57					
58	+ -			 	-
59				-	
60 61				 	
62					
63					
64	1				

PAGE	D00	D01	D02	D03	D04
66					
67 68					
69					
70					
71					
72 73					
73 74					
75					
76					
77					
78 79					
80					
81					
82					
83 84					
85					
86					
87					
88 89					
90					
91					
92					
93					
94 95					
96					
97					
98					
99					
100 101					
102					
103					
104					
105 106					
107					
108					
109					
110 111					
112					
113					
114					
115	1				
116 117					
118					
119					
120					
121 122					
123					
124					
125					
126 127					
127					
129					
130					

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 3 از 22

CONTENTS

1.0	INTRODUCTION	4
2.0	SCOPE	4
3.0	NORMATIVE REFERENCES	
3.1	Local Codes and Standards	5
3.2	International Codes and Standards	
3.3	THE PROJECT DOCUMENTS	
3.4	ENVIRONMENTAL DATA	
4.0	RADIATION STUDY	6
4.1	FLARE SYSTEM	6
4.2	RADIATION PERMISSIBLE DESIGN LEVEL	6
4.3	FALRE RADIATION SCENARIOS	7
4.4	Assumptions	8
4.5	ENVIRONMENTAL DATA	9
4.6	RESULTS	10
4.7	FLARE RADIATION STUDY BASE ON WIND VELOCITY 10m/s	10
5.0	PROCESS CONSEQUENCE MODELING	15
5.1	BASIC OF THE CALCULATION	15
5.1.1	7.1. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	_
5.1.2	PROCESS DATA	15
5.1.3	SENSITIVITY OF EFFECTIVE PROCESS PARAMETER ON OUTCOMES	16
	3.1 Pressure	
5.1.3	3.2 TEMPERATURE	16
5.1.3	3.3 Inventory	16
5.1.3	3.4 Release direction	
6.0	FLARE RADIATION AND DISPERSION	16
6.1	Flare description	
6.2	RESTRICTED AREA (STERILE ZONE) RESULT FOR FLARE	
6.3	FLARE DISPERSION	20
7.0	CONCLUSION	22

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

پیمان:	شماره
--------	-------

053 - 073 - 9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 4 از 22

1.0 INTRODUCTION

Binak oilfield in Bushehr province is a part of the southern oilfields of Iran, is located 25 km northwest of Genaveh city.

With the aim of increasing production of oil from Binak oilfield, an EPC/EPD Project has been defined by NIOC/NISOC and awarded to Petro Iran Development Company (PEDCO). Also PEDCO (as General Contractor) has assigned the EPC-packages of the Project to "Hirgan Energy - Design and Inspection" JV.

As a part of the Project, a New Gas Compressor Station (adjacent to existing Binak GCS) shall be constructed to gather of 15 MMSCFD (approx.) associated gases and compress & transfer them to Siahmakan GIS.

GENERAL DEFINITION

The following terms shall be used in this document.

CLIENT: National Iranian South Oilfields Company (NISOC)

PROJECT: Binak Oilfield Development - Surface Fcilities; New

Gas Compressor Station

EPD/EPC CONTRACTOR (GC): Petro Iran Development Company (PEDCO)

EPC CONTRACTOR: Joint Venture of : Hirgan Energy – Design & Inspection

(D&I) Companies

VENDOR: The firm or person who will fabricate the equipment or

material.

EXECUTOR: Executor is the party which carries out all or part of

construction and/or commissioning for the project.

THIRD PARTY INSPECTOR (TPI): The firm appointed by EPD/EPC CONTRACTOR (GC)

and approved by CLIENT (in writing) for the inspection

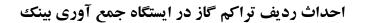
of goods.

SHALL: Is used where a provision is mandatory.

SHOULD: Is used where a provision is advisory only.

WILL: Is normally used in connection with the action by

CLIENT rather than by an EPC/EPD CONTRACTOR,


supplier or VENDOR.

MAY: Is used where a provision is completely discretionary.

2.0 SCOPE

The purpose of this document is to define the safety limits for radiation and dispersion of relief

شماره پیمان: 9184 – 073 – 053

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 5 از 22

gases to be burnt/dispersed in flare stacks of the "BIMAK NEW Gas Compressor Station".

3.0 NORMATIVE REFERENCES

3.1 LOCAL CODES AND STANDARDS

•	IPS-E-PR-450	Process Design Of Pressure Relieving Systems Inclusive Safety Relief Valves
•	IPS-E-PR-460	Process Design Of Flare And Blowdown Systems
•	IPS-G-SF-860	General Standard for Air Pollution Control

3.2 INTERNATIONAL CODES AND STANDARDS

•	API-RP-521	Fifth Edition, 2007.
•	API-RP-520	"Sizing, Selection and Installation of Pressure-Relieving Devices in Refineries, Part 1-Sizing and Selection", Eighth Edition, 2008.

3.3 THE PROJECT DOCUMENTS

•	BK-GNRAL-PEDCO-000-PR-DB- 0001	Process Basis of Design
•	BK-GNRAL-PEDCO-000-PR-DC-0001	Process Design Criteria
•	BK-GCS-PEDCO-120-PR-RT-0001	Flare Network Study Report
•	BK-GCS-PEDCO-120-PR-LI-0008	Relief Load Summery
•	BK-GCS-PEDCO-120-PR-PH-0003	Flare.Blow Down And Relief Philosophy

3.4 ENVIRONMENTAL DATA

Refer to "Process Basis of Design; Doc. No. BK-GNRAL-PEDCO-000-PR-DB-0001".

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE	RADIATION	& DISPE	RSION	STUDY REP	ORT	
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 6 از 22

4.0 RADIATION STUDY

4.1 FLARE SYSTEM

In case of any conflict between the contents of this document or any discrepancy between this document and other project documents or reference standards, this issue must be reported to the CLIENT. The final decision in this situation will be made by CLIENT. All relief devices capable of relieving hydrocarbons under any failure mode shall relieve to a closed flare system. Hydrocarbons shall not be relieved to the atmosphere directly from relief devices wherever possible. In certain cases where the routing of hydrocarbon vents to a closed relief system is not possible, discharges may be routed to atmosphere at safe location.

The function of the flare system unit is to collect and burn all gases that are vented from the unit due to both continuous and emergency operations. The system must be able to handle the volume of gas through the depressurizing operation during emergencies and shut down.

Vapor relief headers should be sized in accordance with API-RP-521 and IPS-E-PR-460. In order to reduce the relief header loads and prevents surges due to two-phase gas/liquid flow as much as possible, it is advised to direct the disposed liquids into a separate closed hydrocarbon drain system. This system should be designed based on IPS-E-PR-460 .

One flare systems have been considered for BINAK NEW Gas Compressor Station: The flare system capable to relieved gas from pressure source between 0.5 barg to 54.1 barg.

The flare network is including of independent 12" flare stack, ignition system, knock-out drum have been considered for hydrocarbons in order to reduce the effects of backpressure into low pressure relief systems. The stack has minimum three pilots to guarantee flame light.

4.2 RADIATION PERMISSIBLE DESIGN LEVEL

A safe level of heat radiation intensity for continuous flaring for a limited time exposure of up to 3 minutes shall be 4.73 kw/m2 (1500 BTU/hr-ft2). If it is necessary to work within this radiation circle, protective measures must be taken to ensure safety. 6.31 kw/m2 (2000 BTU/hr-ft2) of heat intensity in areas where emergency actions lasting up to 1 minute may be required by personnel without shielding but with appropriate clothing.

Personnel access to the radiation intensity circle of 9.46 kw/m2 (3000 BTU/hr-ft2) in the plant shall be prohibited. Protection shall be required for equipment in this area.

In the following table permissible design levels for radiation have been specified as per API 521:

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

	_		-
053 – 073 –	9	18	4

	FLARE	RADIATION	& DISPE	RSION	STUDY REP	ORT	
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 7 از 22

Permissible design level K kW/m² (Btu/h·ft²)	Conditions
9,46 (3 000)	Maximum radiant heat intensity at any location where urgent emergency action by personnel is required. When personnel enter or work in an area with the potential for radiant heat intensity greater than 6,31 kW/m² (2 000 Btu/h·ft²), then radiation shielding and/or special protective apparel (e.g. a fire approach suit) should be considered.
	SAFETY PRECAUTION — It is important to recognize that personnel with appropriate clothing ^a cannot tolerate thermal radiation at 6,31 kW/m ² (2 000 Btu/h·ft ²) for more than a few seconds.
6,31 (2 000)	Maximum radiant heat intensity in areas where emergency actions lasting up to 30 s can be required by personnel without shielding but with appropriate clothing ^a
4,73 (1 500)	Maximum radiant heat intensity in areas where emergency actions lasting 2 min to 3 min can be required by personnel without shielding but with appropriate clothing ^a
1,58 (500)	Maximum radiant heat intensity at any location where personnel with appropriate clothing a can be continuously exposed

^a Appropriate clothing consists of hard hat, long-sleeved shirts with cuffs buttoned, work gloves, long-legged pants and work shoes. Appropriate clothing minimizes direct skin exposure to thermal radiation.

4.3 FALRE RADIATION SCENARIOS

For radiation from the flare, a scenario has been considered:

1. Fire case at compressor station by Fire Case area 1(PSV-2111/2112, PSV-2113/2114, PSV-2131A, PSV-2121A, PSV-2271 are in fire)

The maximum load from this scenario is included in Table 1 applied in flare radiation study. Radiation study the arrangement and stack height calculated, reported based on worst scenario:

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان: 9184 – 073 – 053

	FLARE	RADIATION	& DISPE	RSION	STUDY REP	ORT	
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 8 از 22

Table 1: Flaring scenario

Scenarios	Fire Case area 1 (PSV-2111/2112, PSV-2113/2114,PSV-2131A ,PSV-2121A,PSV-2271)
Vapour Fraction	1.00
Temperature [C]	272
Molecular Weight	48.1
Pressure [Barg]	0.4
Molar Flow [MMSCFD]	16.6
Mass Flow [kg/h]	39793
Cp/Cv	1.074
Z Factor	0.9954
Viscosity [cP]	0.011
Master Comp Mole Frac	
Mole Frac (H2O)	0.525812
Mole Frac (CO2)	0.001000
Mole Frac (H2S)	0.015006
Mole Frac (Methane)	0.006002
Mole Frac (Ethane)	0.015006
Mole Frac (Propane)	0.039016
Mole Frac (i-Butane)	0.011004
Mole Frac (n-Butane)	0.033013
Mole Frac (i-Pentane)	0.042017
Mole Frac (n-Pentane)	0.027011
Mole Frac (n-Hexane)	0.136054
Mole Frac (n-Heptane)	0.074030
Mole Frac (n-Octane)	0.041016
Mole Frac (n-Nonane)	0.026010
Mole Frac (n-Decane)	0.006002
Mole Frac (n-Undecane)	0.002001
Mole Frac (Nitrogen)	0.00000

4.4 ASSUMPTIONS

- 1- Maximum 0.5 Mach for sizing of riser diameters is considered. (Sub Sonic type)
- 2- Maximum radiation level is 1.58 kw/m² at fence of BINAK NEW Gas Compressor Station.
- 3- Maximum radiation level is 4.73 kw/m2 outside of sterile area of flare at maximum relieving rate mentioned in Table 1.
- 4- High efficiency Method has been considered for fraction of combustion heat radiated from a flame. For clean burning, smokeless flares from well-designed flare tips in good condition the High Efficiency method can be used. So based on this assumption, F factor will be calculated by software which in this project is (F ~ 0.17)

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

	ه پیس.	٠
053 – 073	-9184	ļ

	FLARE	RADIATION	& DISPE	RSION	STUDY REP	ORT	
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 9 از 22

5- The Flaresim API method is used to model the flame length in these simulations.

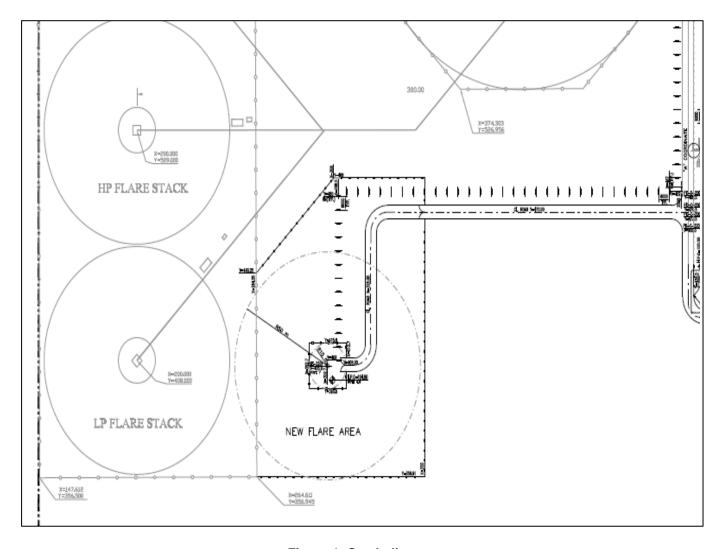


Figure 1: Stack distance

D03 4.5

4.5 ENVIRONMENTAL DATA

Table 2: Environmental Data

		Atmosphere			
Pressure	0.99 bar	Temperature	50 C	Humidity	4%
Wind Speed	Flare thermal radiation = 10 m/s	Wind Direction	NW to SE		
Background					

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره صفحه: 10 از 22

شماره پیمان:		FLARE	RADIATION	& DISPE	RSION	STUDY REP	ORT	
053 - 073 - 9184	پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
000 010 0101	BK	GCS	PEDCO	120	PR	RT	0002	D03

Background Noise	60.0 dB	Solar Radiation	1.010 kW/m2
Inc. Background Noise	Active	Inc. Solar Radiation	Active

4.6 RESULTS

Each study on radiation from the flare resulted into the minimum required flare stack height.

Table 3: Flare Stack Design Results

Description	Stack height (m)	Riser diameter (in)
FLARE (Smokeless operation)	22.5	12

Worst case condition for sizing based on table 1 is of the flare and the results for worst scenario (Fire case Area 1) are presented in the following:

4.7 FLARE RADIATION STUDY BASE ON WIND VELOCITY 10M/S

Table 4: Flare tip calculation result

			TIP RESULTS			
Flame Length	41.46 m	Heat Release		396389 KW		
API Flame Length	42.30 m	F (factor) Heat Radiate	d	0.1721		
Exit Temperature	272 C	Actual Volume Flow		37889 m3/h		
Wind Speed At Tip	10 m/s					
	•		ASSIST FLUID)		
Fluid	Air	Mass Flow		9444 kg/h	Flow Ratio	0.2373
	•	VELOCITIE	S and PRESSU	JRE DROP		
Exit Velocity	144.3 m/s	Tip Outlet pres.		0.99 bar	Total Tip Outlet pres.	1.1099 bar
Exit Mach Number	0.4262	Tip Inlet pres.		1.004 bar	Total Tip Inlet pres.	1.112 bar
Contraction Coeff.	1	Seal Inlet pres.		1.022 bar	Total Seal Inlet pres.	1.128 bar
		Stack Inlet pres.		1.108bar	Total Stack Inlet pres.	1.208 bar
		Tip Pressure Drop		0.01442 bar	Tip Total Pressure Drop	0.01289 bar
		Seal Pressure Drop		0.01773 bar	Seal Total Pressure Drop	0.01582bar
		Stack Pressure Drop	0.08624bar	bar Stack Total Pressure Drop 0.07799		0.07799 bar

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

	پیمان:	ثماره
053 - 073 -	918	4

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 11 از 22

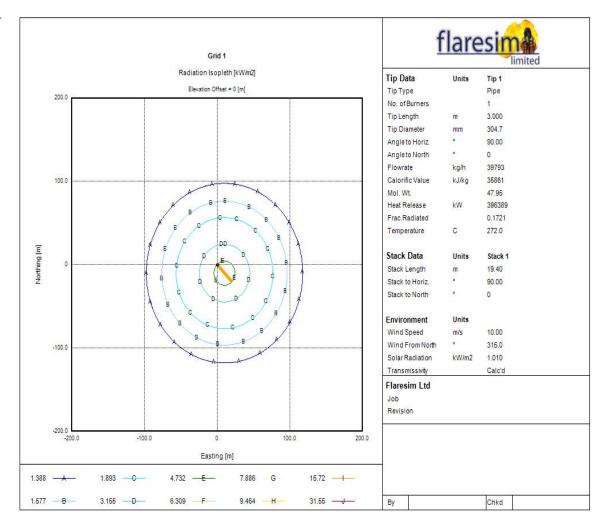


Figure 2: Radiation Results

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

	شماره پیمان:
053 - 073 -	9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 12 از 22



Figure 3: Noise Results

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

باره پیمان:	ئىد
053 - 073 - 9184	

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 13 از 22

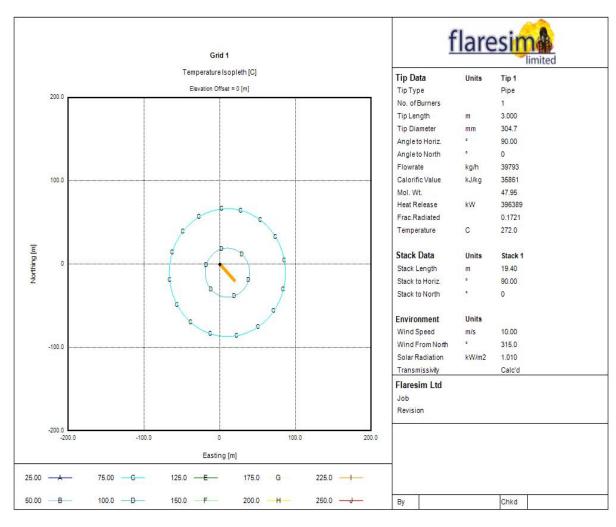


Figure 4: Temperature Results

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

FLARE RADIATION & DISPERSION STUDY REPORT							
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه
BK	GCS	PEDCO	120	PR	RT	0002	D03

شماره صفحه: 14 از 22

Table 5: Flare Results max Radiation/Noise/Temperature

	Maximum Radiation (near stack)							
Sizing Limit		Find Max. Rad.	TRUE		Initial Grid Points	-		
Radiation	4.73 kW/m2							
Noise	108	Northing	0 m		Easting	0.0 m		
Temperature	115.9							
		Maximum Radiation	(stack fence	are	a)			
Sizing Limit		Find Max. Rad.	TRUE		Initial Grid Points	-		
Radiation	2.781kW/m2							
Noise	100	Northing	0 m		Easting	50.0 m		
Temperature	90							
		Radiation	near unit					
Sizing Limit		Find Max. Rad.	TRUE		Initial Grid Points	-		
Radiation	1.15 kW/m2							
Noise	88.75	Northing	0 m		Easting	190.0 m		
Temperature	67.01							

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان: 9184 – 073 – 053

	FLARE RADIATION & DISPERSION STUDY REPORT						İ	
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه	
BK	GCS	PEDCO	120	PR	RT	0002	D03	

شماره صفحه: 15 از 22

5.0 PROCESS CONSEQUENCE MODELING

5.1 BASIC OF THE CALCULATION

5.1.1 APPLIED DOCUMENTS AND USED SOFTWARE

The calculations for the consequences analysis are made according to the Total Exploration Production document TOTAL-GS-SF-253 General Specification Safety of Impacted Area, Restricted Area and Fire Zones. The software used for the consequence analysis has been PHAST 8 (DNV).

5.1.2 PROCESS DATA

The data used is the design data available at detail stage of the project, such as noted in PFD's, Process Heat and Material Balances, P&ID and in some cases equipment data sheets. For each case, the most conservative process data are taken into consideration to perform the simulation.

Based on Total GS-EP-SAF-253; the table below gives the definition of the main typical scenarios outcomes applicable to Vents and Flare Operation.

Table 6: typical scenarios and chance of occurrence

Scenario outcome	Definition	Specific conditions
Flare normal operation	Maximum Continuous Flaring (MCF): flaring the largest allowable steady flow of combustible gas in normal operating conditions (Client). Emergency Flaring (EF): flaring a peak flow of combustible gas in upset or emergency operating conditions (Client).	It will be studied.
Flare flame out: flammable and/or toxic	Unignited flare gas release.	It will be studied.
Cold vents	Vent handling significant flow rates generally from pressurized equipment. The word "cold" meaning without flame (Client).	Cold vent is not in scope of this project, so this scenario will not be studied.
Degassing vents	Vent handling low flow rates, generally from atmospheric equipment. A degassing vent is a non-ignited vent to atmosphere. (Client).	There is no such a case in this project, so this scenario will not be studied.

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 16 از 22

5.1.3 SENSITIVITY OF EFFECTIVE PROCESS PARAMETER ON OUTCOMES

Sensitivity of each process parameters on outcomes has been illustrated in this section:

5.1.3.1 PRESSURE

Pressure has MAJOR effect on Fire & Dispersion scenarios. Increase in pressure leads to more momentum of discharging material from hole and consequently bigger jet fire, and dispersion effect (toxic or flammable).

5.1.3.2 TEMPERATURE

Temperature has MINOR effect on Fire & Dispersion scenarios. The prediction of behavior of discharging material by changing temperature is not easy, but generally cold material has bigger dispersion effect. This effect could be different depending on material composition, pressure and etc.

5.1.3.3 INVENTORY

Inventory has NO effect in Fire Zone study and Minor effect on Restricted and Impacted area study.

As TOTAL-GS-SF-253 mentioned, for "Flammability" and "Thermal radiation" calculation, release flow rate shall be "Initial release rate for 10 minutes" and therefore the inventory has NO effect at all.

In Restricted and Impacted scenarios, where the "release flow rate of leak" is less than "flow rate of inlet line to vessel", inventory has NO effect at all. In comparison, for scenarios that leak flow rates are less than "flow rate of inlet line to vessel", inventory has Minor effect on "discharging material flow rate", unless the inventory is very low.

5.1.3.4 RELEASE DIRECTION

In most gas releases, Horizontal impingement causes bigger dispersion effect in comparison to Horizontal. For volatile liquid cases, normally Horizontal release leads more dispersion effect than of Horizontal Impingement. Furthermore, Horizontal impingement scenario reduces the effect of Jet Fire significantly almost in all scenarios.

6.0 FLARE RADIATION AND DISPERSION

6.1 FLARE DESCRIPTION

The function of the Flare System Unit is to collect and burn all gases that are vented from the

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان: 9184 – 073 – 053

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 17 از 22

other units of the plant due to both continuous and emergency operations. It must also cater for the possibility of depressurization of equipment during emergencies.

In this report, In this report, two main scenarios have been studied which summarized in below table:

Flare

Table 7 - Flare studied scenarios

Diameter (in) Default Height (m) Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	e Case area 1 2111/2112, PSV- 2114, PSV-2131A 121A, PSV-2271) 12 22.2 272 39793 48.1 0.525812
Diameter (in) Default Height (m) Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	2114,PSV-2131A 121A,PSV-2271) 12 22.2 272 39793 48.1
Diameter (in) Default Height (m) Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	121A,PSV-2271) 12 22.2 272 39793 48.1
Diameter (in) Default Height (m) Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	12 22.2 272 39793 48.1
Default Height (m) Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	22.2 272 39793 48.1
Temperature (C) Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	272 39793 48.1
Flow rate (kg/hr) Mol. Wt. Mole Frac (H2O)	39793 48.1
Mol. Wt. Mole Frac (H2O)	48.1
Mole Frac (H2O)	
` '	1 525012
Mole Frac $(CO2)$	7.323812
Mole Hac (CO2)	0.001000
Mole Frac (H2S)	0.015006
Mole Frac (Methane)	0.006002
Mole Frac (Ethane)	0.015006
Mole Frac (Propane)	0.039016
Mole Frac (i-Butane)	0.011004
Mole Frac (n-Butane)	0.033013
Mole Frac (i-Pentane)	0.042017
Mole Frac (n-Pentane)	0.027011
Mole Frac (n-Hexane)	0.136054
Mole Frac (n-Heptane)	0.074030
Mole Frac (n-Octane)	0.041016
Mole Frac (n-Nonane)	0.026010
Mole Frac (n-Decane)	0.006002
Mole Frac (n-Undecane)	0.002001

6.2 RESTRICTED AREA (STERILE ZONE) RESULT FOR FLARE

According to the results of flare radiation and dispersion modeling which have been reported as below tables, current available /sterile zones for flare are 50m and 55m respectively.

o Restricted Area:

- > FLAMMABLE GAS DISPERSION (FLAME OUT GAS/SPRAY CLOUD):
 - Release height 22.2 m
 - Sizing criteria: 100% LFL

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 18 از 22

Restricted Area:

- ➤ TOXIC GAS DISPERSION (FLAME OUT GAS/SPRAY CLOUD):
 - Release height 22.2 m
 - ➤ Sizing criteria: 472 ppm H2S for emergency flaring

o IMPACTED Area:

- ➤ TOXIC GAS DISPERSION (FLAME OUT GAS/SPRAY CLOUD):
 - Release height 22.2 m
 - > Sizing criteria: 100ppm H2S for emergency flaring

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:	٥
053 - 073 - 9184	

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 19 از 22

Table 8 - Flare Radiation and Dispersion Results based on 22.2 meter heights- Emergency flaring

Fire Case area 1 (PSV-2111/2112, PSV-2113/2114, PSV-2131A, PSV-2121A, PSV-2271)

Scenario	Weather Condition	LFL gas cloud maximum distance and minimum height (m) from source and ground level	H2S TOXIC gas cloud maximum distance and minimum height (m) from source and ground level	
	Summer 2/F	3.4/20	21.9/20	
Area	Summer 5.2/D	4.3/20	24.3/20	
Flare FST-2201; Restricted Area	Summer 7/D	4.7/20	24.8/20	
Resti	Summer 11.2/D	5.3/20	23.6/20	
.201;	Winter 2/F	3.2/20	19.6/20	
ST-2	Winter 5.2/D	4.1/20	22.7/20	
lare F	Winter 7/D	4.5/20	23.5/20	
ш	Winter 11.2/D	5.1/20	22.3/20	
	Summer 2/F	N.A	127/20	
Area	Summer 5.2/D	N.A	84.8/20	
cted /	Summer 7/D	N.A	75.7/20	
Ітрас	Summer 11.2/D	N.A	63.3/20	
201; 1	Winter 2/F	N.A	116/20	
FST-	Winter 5.2/D	N.A	82.8/20	
Flare FST-201; Impacted Area	Winter 7/D	N.A	73.1/20	
<u> </u>	Winter 11.2/D	N.A	61/20	

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 20 از 22

As seen in the above tabled, Fuel gas normal flaring will not have radiation impacts on surrounding facilities due to low flow rate of burning gas.

Based on the results and with considering of 22.2 m stack height, no areas will be affected by fire radiation of 4.73 kw/m².

Impacted area for emergency flaring will be around 55 m .The impacted area is not under the control of Client but agreement shall be formalized with Local Authorities to minimize presence of public (e.g. to limit construction of buildings, in particular permanent settlements, or operation of transportation means open to public).

With considering of flare height of 22.2 m and based on the result of this study, there is no any chance of reaching the 100% LFL flaring gas and toxic material (H2S) in flare flameout condition to the ground level. The selected height of flare system is adequate to dilute venting gas during emergency condition in downwind of wind direction.

6.3 FLARE DISPERSION

The objective of this section is to determine the required exclusion zone around the relief area and determine the design requirement to ensure personnel safety during emergency hydrocarbon flare relief. The scope of this study includes:

- Modelling of dispersion of flammable gas from flare for emergency depressurisation (emergency flaring, i.e. flame-out);
- Modelling of dispersion of H2S from flare for emergency depressurisation (emergency flaring, i.e. flame-out);

	Flare Restricted area affected zone by	Not	Flare Impacted area	
flammable gas dispersion (m)		Reached	affected zone by flammable gas	Not
	• • • • • • • • • • • • • • • • • • • •		dispersion (m)	Reached
	Flare Restricted area affected zone by	Not	Flare Impacted area affected zone	Not
	toxic gas dispersion (m)	Reached	by toxic gas dispersion (m)	Reached

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر كننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 21 از 22

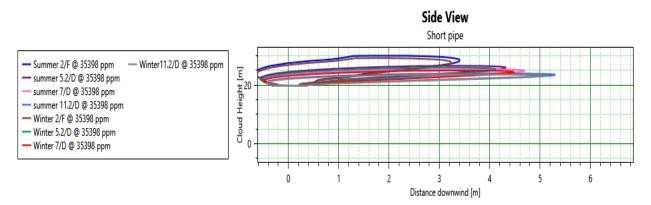


Figure 1 - Flare affected area-LFL Distribution for Flame out Case I (Restricted)

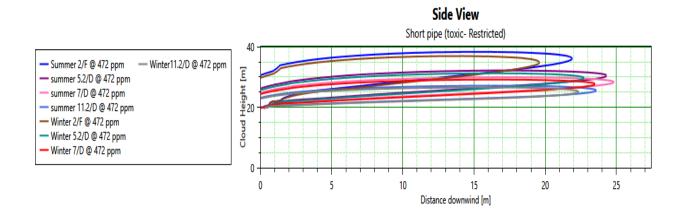


Figure 2 - Flare affected area-TOXIC GAS Distribution for Flame out Case I (Restricted)

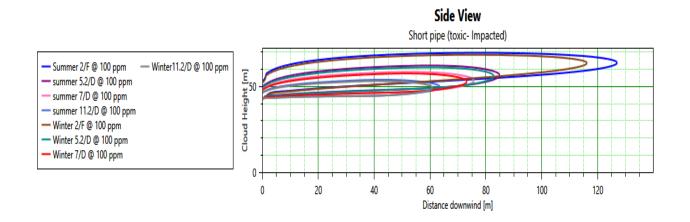


Figure 5 - Flare affected area- TOXIC GAS Distribution for Flame out Case I (Impacted)

احداث ردیف تراکم گاز در ایستگاه جمع آوری بینک

شماره پیمان:

053 - 073 - 9184

	FLARE RADIATION & DISPERSION STUDY REPORT								
پروژه	بسته کاری	صادر کننده	تسهيلات	رشته	نوع مدرك	سريال	نسخه		
BK	GCS	PEDCO	120	PR	RT	0002	D03		

شماره صفحه: 22 از 22

7.0 CONCLUSION

Based on the results and with considering of 22.2 m stack height, no areas will be affected by fire radiation of 4.73 kw/m2.

With considering of flare height of 22.2 m and based on the result of this study, there is no any chance of reaching the 100% LFL flaring gas to the ground level. The selected height of flare system (22.2 m) is adequate to dilute venting gas during emergency condition in downwind of wind direction.

Modelled flare tip in current design has 200 m distance from the plant while the calculated impacted area is not effected considered distance. So the location of flare is so good and no need to relocate it.